일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 자격증
- pytorch
- Deep Learning Specialization
- matplotlib
- r
- 코딩테스트
- Python
- 통계
- 머신러닝
- pandas
- 데이터분석
- sklearn
- SQL
- 파이썬
- 회귀분석
- IRIS
- 이것이 코딩테스트다
- ML
- scikit learn
- 데이터분석준전문가
- ADsP
- 데이터 전처리
- 데이터 분석
- Google ML Bootcamp
- 시각화
- 태블로
- 이코테
- SQLD
- 딥러닝
- tableau
- Today
- Total
목록PD (2)
함께하는 데이터 분석

안녕하세요! 이번에는 Python에서 Seaborn을 활용하여 범주형 변수의 시각화를 공부해보겠습니다. 라이브러리 실행 import numpy as np import pandas as pd import seaborn as sns 데이터 불러오기 mpg = sns.load_dataset('mpg') 1개의 범주형 변수에 대한 시각화 sns.countplot(data = mpg, x='origin') countplot은 x나 y에 하나의 범주형 변수만 넣으면 나머지는 개수로 표현됩니다. sns.countplot(data = mpg, y='origin') mpg['origin'].value_counts() >>> usa 249 japan 79 europe 70 Name: origin, dtype: int64 ..

안녕하세요! 오늘은 Python에서 Seaborn을 이용하여 수치형 변수의 시각화를 공부해보겠습니다. Seaborn은 Matplotlib보다 고수준으로 코드도 간단하고 미학적으로도 괜찮습니다. 그렇다면 Matplotlib보다 Seaborn이 좋다는 것일까요? 결론적으로는 두 가지 라이브러리를 다 사용할 줄 알아야 합니다. Matplotlib과 Seaborn을 같이 사용했을 때 Seaborn만을 사용했을 때 보다 더 좋은 결과물을 얻어낼 수 있습니다. 이처럼 결국에는 두 가지 라이브러리를 함께 사용하는 것이 효과적입니다. 그러면 오늘은 Seaborn을 이용하여 시각화를 시작해볼까요? 라이브러리 실행 import numpy as np import pandas as pd import seaborn as sns..