일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 데이터분석준전문가
- ML
- r
- 자격증
- scikit learn
- 코딩테스트
- 머신러닝
- 이코테
- 시각화
- pandas
- matplotlib
- Python
- 데이터 전처리
- sklearn
- SQL
- SQLD
- ADsP
- Deep Learning Specialization
- 데이터 분석
- 회귀분석
- 태블로
- 딥러닝
- IRIS
- 통계
- pytorch
- 데이터분석
- 파이썬
- tableau
- 이것이 코딩테스트다
- Google ML Bootcamp
- Today
- Total
목록RNN (4)
함께하는 데이터 분석

RNN 모델 구현 import torch import torch.nn as nn import string import random import re import time, math num_epochs = 2000 print_every = 100 plot_every = 10 chunk_len = 200 hidden_size = 100 batch_size = 1 num_layers = 1 embedding_size = 70 lr = 0.002 필요한 하이퍼 파라미터를 지정 # import 했던 string에서 출력가능한 문자들을 다 불러옴 all_characters = string.printable # 출력가능한 문자들의 개수를 저장 n_characters = len(all_characters) print(..

순환 신경망의 한계 및 개선 방안 RNN은 어느 정도 이상부터는 결과가 한계에 부딪힘 이유는 타임 시퀀스가 늘어나며 역전파 시 하이퍼볼릭 탄젠트 함수의 미분 값이 0 ~ 1 사이의 값이 나오고 여러 번 곱해져 기울기 값이 역전파될 때 타임 시퀀스가 길어질수록 모델이 제대로 학습을 하지 못하는 기울기 소실(vanishing gradient)이라는 현상이 일어남 순환 신경망에서는 활성화 함수를 바꾸는 경우도 있지만 개선 모델인 LSTM과 GRU를 사용 LSTM(long short-term memory) 기존의 순환 신경망 모델에 장기기억을 담당하는 부분을 추가한 것 기존에는 은닉 상태만 있었다면 셀 상태라는 이름을 가지는 전달 부분을 추가 GRU(gated recurrent unit) LSTM보다 간단한 구..

모델 구현 import torch import torch.nn as nn import torch.optim as optim import numpy as np from tqdm.notebook import tqdm n_hidden = 35 # 순환 신경망의 노드 수 lr = 0.01 epochs = 1000 string = "hello pytorch. how long can a rnn cell remember? show me your limit!" chars = "abcdefghijklmnopqrstuvwxyz ?!.,:;01" char_list = [i for i in chars] n_letters = len(char_list) 예시에서 사용할 문장은 'hello pytorch. how long can ..

순환 신경망의 발달 과정 순환 신경망(RNN)은 합성곱 신경망보다 먼저 나왔음 위키피디아에 따르면 1982년 존 홉필드가 순환 신경망의 기본적인 형태를 대중화했다고 알려져 있지만, 해당 아이디어가 이때 처음 나온 것은 아니고 이전에도 언급된 적이 있음 이때 만들어진 순환 신경망이 오늘날의 순환 신경망의 형태로 오기까지는 꽤 많은 시간이 걸렸는데, 발전된 연산 능력과 데이터의 증가로 인해 성과를 보일 수 있게 된 것 특히 발전 과정에서 나온 LSTM(long short-term memory)과 GRU(gated recurrent unit)같은 변형 모델들은 오늘날에도 많이 사용되고 있음 순환 신경망이 왜 필요한지를 살펴보면 TRIANGLE과 INTEGRAL이라는 글자는 같은 알파벳들의 나열이지만 순서가 다..