일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 이것이 코딩테스트다
- 데이터 전처리
- 데이터분석
- 통계
- ML
- scikit learn
- 이코테
- 파이썬
- Python
- SQLD
- ADsP
- matplotlib
- r
- tableau
- Google ML Bootcamp
- Deep Learning Specialization
- 딥러닝
- 머신러닝
- pandas
- 시각화
- 데이터 분석
- 데이터분석준전문가
- 회귀분석
- 태블로
- sklearn
- SQL
- 자격증
- pytorch
- 코딩테스트
- IRIS
- Today
- Total
목록ElasticNet (2)
함께하는 데이터 분석
이어서 Python으로 규제 회귀 모델인 라쏘, 릿지, 엘라스틱넷 regression을 알아보겠습니다. 모듈 및 데이터 불러오기 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet, LassoCV, RidgeCV, ElasticNetCV from sklearn.preprocessing import StandardScaler from sklearn import met..
오늘은 규제 회귀 모델인 Lasso, Ridge, ElasticNet Regression에 대해 알아보겠습니다. 규제 회귀 모델 사용 배경 규제 회귀 모델 이전에 우리들이 많이들 알고 있는 선형 회귀 모형이 있습니다. 회귀모델의 목적은 크게 2가지입니다. 독립변수들의 연관성과 미래 데이터의 예측이죠. 그래서 예측력을 높이기 위해 학습 데이터에 지나치게 맞추게 되고 과적합(overfitting)의 문제가 발생하게 됩니다. 그래서 overfitting의 문제를 해결하기 위해 overfitting 된 파라미터에 페널티를 부여하는 규제 회귀모델이 등장합니다. Lasso Regression L1-norm 페널티항으로 회귀모델에 페널티를 부과하여 모델의 설명력에 기여하지 못하는 독립변수의 회귀계수 크기를 0에 가깝..