일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 자격증
- 시각화
- 딥러닝
- Python
- Deep Learning Specialization
- pytorch
- 데이터분석준전문가
- 이것이 코딩테스트다
- SQLD
- sklearn
- r
- Google ML Bootcamp
- 데이터분석
- scikit learn
- IRIS
- ML
- matplotlib
- 이코테
- SQL
- tableau
- 머신러닝
- ADsP
- 회귀분석
- 태블로
- 코딩테스트
- 데이터 분석
- 통계
- 데이터 전처리
- 파이썬
- pandas
- Today
- Total
목록SSE (2)
함께하는 데이터 분석
오늘은 SSE와 결정계수(R^2)에 대해 알아보겠습니다. 저번 시간에 SSE에 대해서 알아봤는데 오늘은 2가지 model에 대해 SSE를 알아보겠습니다. M_0 model의 SSE m_0 model은 독립변수인 x_i가 없는 모델입니다. 빨간색 x표시가 observation인데 Y축 위에 있는 것을 볼 수 있죠. 이때 SSE는 위와 같습니다. SSE는 Sum of Square Estimation의 약자이죠. M_1 model의 SSE M_1 model이 우리가 알고 있는 simple linear regression입니다. M_1의 SSE가 우리가 말하는 일반적인 SSE입니다. M_0과 M_1 model의 SSE비교 observarion에서 회귀선으로 내린 선분의 제곱한 값이 SSE인 것은 다들 알고 계실..
안녕하세요. 오늘은 단순 선형 회귀모형에서 모수인 β_0, β_1을 추정하기 위한 방법으로 LSE(least Square Estimation)과 MLE(Maximum Likelihood Estimation)을 알아보겠습니다. 단순 선형회귀식 이때 입실론을 남기고 좌변으로 넘기면 아래의 식이 완성됩니다. 입실론 입실론은 그래프 상으로 위와 같은 파란색 선분의 길이입니다. 이때 LSE(Least Square Estimation)는 즉, 길이의 제곱의 합이 최소가 되는 최소제곱법을 나타냅니다. Fitting Model SSE(Sum of Square Estimation) 우리가 가장 많이 쓰는 방법입니다. 우리의 목표는 입실론의 제곱의 합이 최소가 되게 하는 것이죠. SAD(Sum of Absolute Dif..