일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- scikit learn
- Python
- r
- SQL
- 이것이 코딩테스트다
- Deep Learning Specialization
- pandas
- 딥러닝
- 회귀분석
- SQLD
- 머신러닝
- Google ML Bootcamp
- 데이터분석준전문가
- sklearn
- 이코테
- 시각화
- matplotlib
- IRIS
- 통계
- 데이터 분석
- 파이썬
- 데이터 전처리
- pytorch
- ML
- 코딩테스트
- 자격증
- tableau
- ADsP
- 태블로
- 데이터분석
- Today
- Total
목록라이브러리 (2)
함께하는 데이터 분석
저번에 다 작성하지 못했던 Pandas 라이브러리를 마무리하려고 합니다! 그럼 시작해볼까요? 5-1. 결측치 여부 확인 df2.isnull() df2.isnull().sum() # 각 열마다 결측치 개수 출력 >>> Name 0 Age 0 Score 0 Score2 2 dtype: int64 5-2. 결측치가 존재하는 행 삭제 df2.dropna(how = 'any') # how = 'all' : 행의 모든 값이 NaN인 경우 삭제 5-3. 결측치 대체 df2.fillna(value = 50.0) # 기본적으로 저장 X df2['Score2'].fillna({'two' : 68.0, 'five': 80.0}, inplace = True) # inplace = True : 저장 df2 6-1. 기술 통계 ..
오늘은 말씀드린 대로 NumPy에 이어서 Pandas 라이브러리에 대해 알아보겠습니다! Pandas 라이브러리는 대표적인 데이터 분석 라이브러리이며 행과 열로 이루어진 데이터 객체를 만들고 다룰 수 있어 안정적으로 대용량의 데이터를 처리하는 데 매우 편리하다는 장점이 있습니다. 이번에도 마찬가지로 주피터 노트북을 이용했으며 이용하고 싶으시다면 2022.01.22 - [데이터 분석 공부하기/Python] - [Python] Jupyter Notebook 설치 및 실행 [Python] Jupyter Notebook 설치 및 실행 오늘은 간단하게 Anaconda를 설치하여 주피터 노트북을 실행시키는 방법을 알아볼게요! 우선 아나콘다는 수학과 과학 분야에서 사용되는 여러 패키지들을 묶어 놓은 파이썬 배포판이고 ..