일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- pandas
- 회귀분석
- 시각화
- Python
- pytorch
- ML
- 데이터 분석
- 자격증
- matplotlib
- 코딩테스트
- 이것이 코딩테스트다
- 데이터 전처리
- 딥러닝
- Google ML Bootcamp
- SQLD
- 통계
- 파이썬
- sklearn
- scikit learn
- 데이터분석
- 이코테
- SQL
- 데이터분석준전문가
- ADsP
- IRIS
- tableau
- Deep Learning Specialization
- r
- 태블로
- 머신러닝
- Today
- Total
목록앙상블 (3)
함께하는 데이터 분석
Gradient Boosting Machine Gradient Boosting Machine, GBM은 이름에서도 알다시피 Boosting 알고리즘입니다 앙상블과 부스팅에 관한 설명은 이전 포스팅을 참고해 주세요 2022.08.19 - [데이터분석 공부/ML | DL] - [Ensemble] 머신러닝 앙상블 기법 [Ensemble] 머신러닝 앙상블 기법 오늘은 머신러닝에서 자주 등장하는 앙상블 기법에 대해 알아볼게요! 우선 앙상블(Ensemble)이란 여러 개의 분류기를 생성하여 예측값을 종합하여 보다 정확한 예측값을 구하고 각각의 분류기를 tnqkrdmssjan.tistory.com GBM을 알기 위해서는 AdaBoost에 대해서도 알아야 하는데 AdaBoost는 오류 데이터에 가중치를 부여하면서 부스..
교차검증과 하이퍼파라미터 튜닝은 머신러닝 모델의 성능을 높이기 위해 사용하는 기법 교차검증 학습과 검증을 위해 train set, validation set, test set으로 데이터를 나눔 하지만 이러한 방법은 overfitting에 취약할 수 있고 데이터의 개수가 적을 때 어려움이 있음 그리고 고정된 train set와 test set으로 평가를 하다 보면 test set에서만 최적의 성능을 발휘하도록 편향될 수 있기에 이 문제를 해결하기 위해 나온 것이 교차검증 raw 데이터가 충분하지 않을 때 사용하는 방법이 k-fold cross validation 가장 보편적으로 사용되는 교차검증 기법으로 train set를 k개로 분할하여 1개의 validation fold를 나머지 k-1개의 traini..
오늘은 머신러닝에서 자주 등장하는 앙상블 기법에 대해 알아볼게요! 우선 앙상블(Ensemble)이란 여러 개의 분류기를 생성하여 예측값을 종합하여 보다 정확한 예측값을 구하고 각각의 분류기를 사용했을 때의 단점을 보완해주는 기법입니다. 앙상블 기법에는 대표적으로 Voting, Bagging, Boosting이 있습니다. 이제 각각의 기법을 간단하게 살펴보겠습니다! Voting 보팅에는 Hard Voting과 Soft Voting이 있습니다. Hard Voting은 weak learner들의 예측값을 다수결의 원칙을 사용하여 나타내는 것입니다. 위의 사진을 보면 1을 예측한 분류기가 3개, 2를 예측한 분류기가 1개 이므로 다수결의 원칙에 따라 1로 예측하는 것입니다. 최빈값으로 결정한다고 할 수 있죠. ..